Нейросеть. Пошаговое руководство по генерации картинок и текста - стр. 2
Характеристики сверточной нейронной сети:
• обработка изображений и других данных с пространственной структурой;
• извлечение признаков и распознавание шаблонов;
• инвариантность к изменениям в положении объектов.
Рекуррентная нейронная сеть предназначена для работы с последовательными данными, где каждый элемент имеет зависимость от предыдущих. РНС обладает связями с обратной связью, которые позволяют передавать информацию от предыдущих шагов обработки. Это позволяет моделировать долгосрочные зависимости в последовательных данных и использовать контекстную информацию для принятия решений. РНС широко применяются в задачах обработки естественного языка, генерации текста и машинного перевода.
Характеристики рекуррентной нейронной сети:
• обработка последовательных данных с зависимостями;
• моделирование долгосрочных зависимостей;
• использование контекстной информации для принятия решений.
Примеры нейросетей:
1. Прямое распространение (Feedforward Neural Networks):
• Многослойный перцептрон (Multilayer Perceptron)
• Глубокие нейронные сети (Deep Neural Networks)
2. Сверточные нейронные сети (Convolutional Neural Networks):
• LeNet-5
• AlexNet
• VGGNet
• GoogLeNet (Inception)
• ResNet
3. Рекуррентные нейронные сети (Recurrent Neural Networks):
• Простые рекуррентные нейронные сети (Simple RNN)
• LSTM (Long Short-Term Memory)
• GRU (Gated Recurrent Unit)
4. Сверточные рекуррентные нейронные сети (Convolutional Recurrent Neural Networks):
• CRNN (Convolutional Recurrent Neural Network)
5. Автокодировщики (Autoencoders):
• Простой автокодировщик (Simple Autoencoder)
• Вариационный автокодировщик (Variational Autoencoder)
6. Генеративные состязательные сети (Generative Adversarial Networks):
• GAN (Generative Adversarial Network)
• DCGAN (Deep Convolutional Generative Adversarial Network)
• CycleGAN
• StyleGAN
7. Сети долгой краткосрочной памяти (Long Short-Term Memory Networks):
• LSTM (Long Short-Term Memory)
• BLSTM (Bidirectional Long Short-Term Memory)
• GRU (Gated Recurrent Unit)
8. Преобразователи трансформеры (Transformer Networks):
• Transformer
• BERT (Bidirectional Encoder Representations from Transformers)
• GPT (Generative Pre-trained Transformer)
• T5 (Text-to-Text Transfer Transformer)
Это лишь некоторые примеры нейросетей, и существует множество других видов и их модификаций, каждый из которых подходит для определенных задач и областей применения.
Каждый из этих типов нейросетей имеет свои особенности и преимущества, что позволяет выбирать наиболее подходящую модель для решения конкретной задачи в соответствии с ее требованиями и характеристиками входных данных.