Невозможность второго рода. Невероятные поиски новой формы вещества - стр. 17
Вопрос, который мы с Нельсоном и Рончетти хотели исследовать, состоял в том, имеют ли некоторые твердые материалы, полученные быстрым охлаждением, определенную упорядоченность, которой прежде никто не замечал и которая могла бы дать дополнительные преимущества в прикладных задачах.
К тому моменту я уже несколько лет занимался разработкой способов моделирования быстрого охлаждения жидкостей. Меня приглашали на лето – сначала как аспиранта, а затем как постдока – работать над теоретическими компьютерными моделями в Йельском университете и в Исследовательском центре IBM имени Томаса Дж. Уотсона. Мои основные научные интересы в то время лежали в другой области. Однако я пользовался этими исследовательскими возможностями, поскольку был заинтригован тем фактом, что науке все еще было неизвестно расположение атомов в такой примитивной среде, как аморфное вещество. Тут я вполне сознательно следовал одному из самых важных уроков, полученных от моего наставника Ричарда Фейнмана: доверяй своему чутью и ищи достойные задачи, куда бы они тебя ни вели, даже если новое направление не будет совпадать с тем, в котором ты прежде предполагал двигаться.
Летом 1973-го, перед моим завершающим годом учебы в Калтехе, я разработал первую модель стекла и аморфного кремния для генерируемой компьютером непрерывной случайной сети (НСС-модель). Эта модель широко использовалась для предсказания структурных и электронных свойств этих веществ. В последующие годы работы с Рончетти я разработал и более сложные программы для моделирования процесса быстрого остывания и затвердевания.
В 1980 году случайный разговор в Гарварде с Дэвидом Нельсоном дал новую цель всем моим трудам по теме аморфных материалов. Мои компьютерные модели можно было адаптировать для проверки гипотезы Нельсона и Тонера о кубатическом веществе.
Дав своей аудитории в Пенне краткое введение в историю вопроса, я перешел к кульминации своей лекции. Если предположение о кубатической фазе верно, то атомные связи в моей новой компьютерной модели не должны оказаться расположенными случайным образом. В среднем они должны тяготеть к “кубической ориентации”, то есть стремиться к выравниванию вдоль ребер куба.
Мы разработали сложный математический тест для эксперимента, призванного проверить, демонстрирует ли усредненная ориентация связей ожидаемую кубическую симметрию, и вывели количественный параметр, характеризующий, насколько сильно проявляется это кубическое выравнивание.
Результат оказался… абсолютно провальным. Мы не нашли никаких признаков преимущественного выравнивания связей вдоль ребер куба, предсказанного Нельсоном и Тонером.