Невозможность второго рода. Невероятные поиски новой формы вещества - стр. 11
Однако, если при новой попытке ваш друг повернет замощение на 90° (правый рисунок), вы не сможете заметить никаких изменений. Плитки будут выглядеть в точности так же, как и первоначально. Этот поворот на 90° рассматривается как вращательная “симметрия”. На самом деле 90° – это минимальный угол поворота, являющийся симметрией для узора из квадратов. Любой поворот квадрата менее чем на 90° меняет его видимую ориентацию.
Очевидно также, что два поворота на 90°, то есть в сумме на 180°, тоже будут симметрией. Это верно и для трех (270°), и для четырех (360°) таких поворотов. Поскольку требуется четыре таких поворота для совершения полного оборота (360°), о квадратном замощении говорят, что оно обладает симметрией четвертого порядка.
Давайте теперь предложим вашему другу замощение, состоящее из одинаковых рядов прямоугольников, ориентированных длинной стороной горизонтально. При повороте на 90° такое замощение будет выглядеть иначе, поскольку длинные стороны окажутся ориентированы вертикально. Однако поворот на 180° сделает его неотличимым от первоначального. Поэтому в случае прямоугольников 180° – это наименьший поворот, который является симметрией. Два таких поворота дают 360°. Так что замощение из прямоугольников обладает симметрией второго порядка.
Аналогично для параллелограммов единственный поворот, который оставляет замощение без изменений, – 180°. Поэтому замощение параллелограммами также имеет вращательную симметрию второго порядка.
Применив этот же подход к равносторонним треугольникам, мы обнаружим симметрию третьего порядка. А в случае шестиугольников – шестого.
Наконец, существует еще одна возможная вращательная симметрия, которую можно получить на основе каждого из пяти шаблонов. Например, если краям любой из используемых фигур придать неправильную форму, то единственным поворотом, оставляющим узор неизменным, будет полный оборот на 360° – или симметрия первого порядка.
И на этом список возможностей заканчивается. Симметрии первого, второго, третьего, четвертого и шестого порядка исчерпывают список симметрий, возможных для двумерных периодических замощений, – этот факт известен человечеству уже не одно тысячелетие. Древнеегипетские мастера, например, использовали вращательные симметрии для создания прекрасных мозаик. Однако лишь в XIX веке эти выработанные методом проб и ошибок приемы были в полной мере объяснены строгой математикой.
Вернемся, однако, к плиточному полу в нашей душевой. Тот факт, что ваш подрядчик не может сделать периодическое замощение с помощью одних только правильных пятиугольных плиток, не оставляя больших щелей, нарушающих гидроизоляцию, служит наглядной демонстрацией того, что симметрия пятого порядка невозможна согласно законам кристаллографии. Но это не единственная запрещенная симметрия. То же относится к симметриям седьмого, восьмого и любого другого более высокого порядка.