Размер шрифта
-
+

Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя? - стр. 10

По мере того как развивался пытливый человеческий ум, как копились знания, все меньше места в мире оставалось на долю воздействия высших сил. Теперь же у нас остался главный вопрос – почему все возникло? Можно сказать, последний, фундаментальный вопрос. Наконец-то ребята-физики не могут на что-то ответить, а значит, там что-то есть! Так вот, то, что физики не знают чего-то, является для нас лишь причиной еще немного подождать. Я не утверждаю, что ответ будет найден, все-таки мы находимся внутри Вселенной и выйти за ее границы пока не можем. Обращаю внимание на слово «пока». То, что сейчас происходит в нашей повседневной жизни, сто лет назад посчиталось бы просто невозможным. Те приборы и устройства, которые мы используем каждый день, взорвали бы сознание любого человека из самого обозримого прошлого. Что будет через 10, 20, 30 лет, просто невозможно просчитать или представить. Какие открытия нас ждут, в том числе открытия по части устройства нашего мира? То, что мы чего-то не знаем, не повод плодить лишние сущности, так удобно объясняющие все. Они делают Вселенную просто менее удивительной, чем та, что уже нас окружает.

Один лишь свет

Возвращаемся к растущей Вселенной. Точка продолжает расширяться, с момента ее появления прошла одна триллионная секунды. В это эпоху есть лишь свет, а именно фотоны. Во Вселенной было настолько горячо, что фотоны, являясь волной и частицей одновременно, могли свободно превращаться в пары частиц вещества и антивещества, чтобы затем схлопнуться обратно в фотон. В принципе мы все являемся законсервированной энергией того первозданного начала, поскольку вещество и энергия есть по сути две стороны одной медали. Знаменитое уравнение Эйнштейна E = mc>2, где m – это масса объекта, а c – скорость света, показывает, сколько этой энергии в веществе есть, если его полностью пустить на энергию. У каждой частицы в мире может быть ее двойник, античастица. У кварков (слагающих протоны и нейтроны) и лептонов (например, электронов и нейтрино) есть соответственно антикварки и антилептоны[2]. Для электрона, заряженного отрицательно, есть положительно заряженная противоположность – позитрон. Бозоны же – это частицы, обеспечивающие взаимодействие других частиц. Например, фотон – как раз такая частица.


Протон. Он состоит из двух u-кварков и одного d-кварка. Всего есть шесть типов (ароматов) кварков: верхний, нижний, очарованный, прелестный, странный и истинный. Названия такие им дали исключительно для того, чтобы было легче их различать


Забавно, что кварки, из которых состоят протоны и нейтроны в атомном ядре, не могут в нормальных условиях существовать поодиночке – они должны всегда быть либо в паре, либо в тройке. Если же вы решите специальными средствами растащить пару кварков, то чем сильнее станете тянуть, тем сильнее они будут притягиваться друг к другу. Как сейчас считается, в это время между ними появляется все больше специальных частиц, глюонов, обеспечивающих взаимодействие кварков. Но в какой-то момент Вселенной станет выгоднее просто сделать по новому кварку, вместо того чтобы тянуть старые. Глюоны исчезнут, и теперь у вас будет две пары кварков: каждый старый кварк станет держать за ручку своего нового соседа. Когда мы погружаемся в физику элементарных частиц, законы привычной нам логики перестают работать. Здесь можно сделать что-то из пустоты. В самые ранние моменты Вселенной она, судя по всему, представляла собой котел кварк-глюонной плазмы, то есть кварки не могли образовывать никаких пар, а бурлили в единой свободно перемешивающейся массе вместе с глюонами.

Страница 10