Размер шрифта
-
+

Научно-эзотерические основы мироздания. Жить, чтобы знать. Книга 2 - стр. 4


На вопрос оператора «Трехмерен ли мир?» Высшая духовная Сущность ответила: «Мир многомерен. Понятие трех изменений – это представление людей. Вспомним голографию. Возьмем любой предмет, хотя бы куб, и представим его голограмму, но не со стороны, а как бы войдя внутрь ее». А на вопрос «Как можно представить четвертое и пятое измерения?» был получен ответ: «Возьмите матрешку, посмотрите на нее со стороны верхнего слоя, а затем представьте первый слой прозрачным и т. д. Но это взгляд с одного ракурса. То же можно сделать и со стороны верхней части, и со стороны донца».

Геометрия Римана

Бернхард Риман родился в 1826 году, как раз в тот год, когда Лобачевский в Казани обнародовал свою геометрию. Кстати, Ньютон родился в год смерти Галилея. А Эйнштейн – в год смерти Максвелла.


Риман, который, как оказалось, не был знаком с трудами Лобачевского, создал огромный, неизвестный ранее человечеству мир математических пространств, или, по его терминологии, многократно протяженных многообразий, и каждое из них должно было обладать своей собственной геометрией.

Потребовалось установить строение каждого пространства, то есть найти геометрию, ему присущую, научиться строить в нем фигуры и измерять их, иными словами, требовалось установить метрику. Риман предложил общий универсальный принцип: метрические отношения следует искать и фиксировать в бесконечно малой области пространства. Проще говоря, пространство надо мерить бесконечно малыми шагами. Именно в бесконечно малой области действуют более простые законы и более явственно обнажается суть явления и его особенности, характерные для данного момента времени и данной точки пространства [4].

Риман был убежден, что для всех явлений природы, в том числе и для тяготения, взаимодействие на больших расстояниях должно быть следствием микровзаимодействий, то есть процессов, протекающих в соседних бесконечно малых элементах пространства.

Точно суть работы Римана выразил советский геометр Каган, сказав: «Риман расщепил пространство на бесконечно малые элементы и показал, как из упрощенной метрики элемента разворачивается метрика всего пространства».

Выиграв в широте охвата, в общности подхода, Риман проиграл в содержании – им даны основные идеи, но детальной их проработки нет. У Лобачевского было наоборот. Он оставил нам глубокую и детальную проработку своей геометрии.

Позднее Риман решил «спуститься» к некоторым конкретным геометриям – наиболее простым, хотя на примере Лобачевского мы знаем, что простота может быть весьма относительной. Из всего этого многообразия Риман выделил простейшие многообразия – с постоянной кривизной.

Страница 4