Население Земли как растущая иерархическая сеть II - стр. 48
Рис. 2. Рост сети 65536 от 256-ти клаттеров до 65536-ти.
Коррекция роста проведена в 21 точке. Все значения размеров сети, для которых проводилась коррекция М <− М+1, являются (или «почти» являются) делителями числа 65536, если к ним добавить единицу; например, 65536/(13106+1) = 5,000076. Вот частные, которые получаются в результате:
3, 4, 5, 8, 19, 32, 56, 67, 94, 122, 212, 214, 217, 222, 225, 229, 234, 240.
Такие коррекции одни из многих возможных, подобных им, но все они дают практически один и тот же результат, если придерживаться правила: при небольшом отклонении от гиперболической сети добавить в цикл один клаттер, т. е. держать курс на ближайшую гиперболическую сеть. Гиперболическая сеть – это сеть, размер которой равен ce(65536/N), где N > 256 – натуральное число.
Причем при увеличении М на единицу процесс устойчив и через некоторое количество циклов «садится» на гиперболу. При уменьшении М на единицу наблюдается неустойчивость, и процесс роста необратимо уходит от гармонических сетей.
Понадобилась одна коррекция в сторону уменьшения размера сети М: 328 <− 327 (65536/328 = 199.8), если ее не провести процесс срывается с гиперболы (последние три цикла 25501, 43735, 65537). Результаты работы алгоритма «почти точно» ложатся на теоретическую гиперболу сети 65536:
Рис. 3. Теоретическая гипербола сети 65536.
Гиперболический рост сети на первом и втором этапе представляет собой ускоряющийся неустойчивый процесс, требующий от управляющей системы двадцать пять коррекций. Неустойчивость роста понятна и из того факта, что уравнение Капицы, как асимптотический закон роста сети, устойчивых решений не имеет.
Составим таблицу зависимости числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы. Значения почти совпадают: максимальное отличие в три клаттера. В таблице выделены гармонические размеры сети.
Таблица 1. Зависимость числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы.
Третий этап – операция репликации. Собираются копия сети, прокладывается связь между ней и оригиналом. Сеть 4 294 967 296 может стартовать.
Всего имеется 42142 + 255 = 42397 циклов (без учета репликации) и 16 гармонических стадий роста сети 65536. Сведем все данные в таблицы:
Таблица 2А. Подсчет номера цикла и числа клаттеров для гармонических сетей с размером, принадлежащем интервалу [257, 65536].
Таблица 2В. Зависимость числа клаттеров от номера цикла для гармонических размеров сети 65536.
Подсчет числа циклов роста сети любого ранга от двух клаттеров до совершенной