Размер шрифта
-
+

Население Земли как растущая иерархическая сеть II - стр. 141

Сингулярность теоретической гиперболы, сингулярность Дьяконова – Капицы, наступает в момент времени t = 256τ. Постоянная K>4, определяющая рост, связана с безразмерной константой Капицы К и с постоянной Фёрстера С следующим образом: K = √k· K>4 = 1.05·65536 = 68700, С = k·K>4>2τ = 1.1·65536>2·40 = 1.89·10>11.

* * *

Здесь нужно отметить следующее: если алгоритм восьми шагов отвечает действительности, то постоянная K>4 в формуле на рис. 1 (приблизительно равная постоянной Капицы К) должна быть в точности равна 65536. Действительно, в соответствии с теорией Капицы, а также согласно нашей теории, произведение корня квадратного из K>4 (K) на τ равно продолжительности всего исторического периода развития человека, как его обычно принято определять: от неолита до наших дней. Следовательно, корень из K>4 (K) равен числу циклов до сингулярности Дьяконова – Капицы, т. е. 256, а K ≈ K>4 = 256>2 = 65536. Показатель сжатия исторических периодов в таком случае должен быть равен двум, а не 2.7, как в работах С.П. Капицы.


С.П. Капица в последней своей работе «Парадоксы роста…» 2010 года «пришел все таки к выводу», что показатель сжатия исторических периодов должен быть равен двум (стр. 182). Т. к. за момент начала неолита у него взята дата 9000 лет до н. э., т. е. мало отличается от той, что принята в нашей модели, то не только количество циклов, которых должно быть 15, а не 11, но и разметка исторического времени на эти циклы у него должна быть примерно такой же, как у нас[24].

Постоянная τ – единственная размерная постоянная, определяющая гиперболический рост, есть не что иное как: постоянная времени Капицы, время цикла растущей сети в нашей модели, длительность Кондратьевского цикла, продолжительность последнего, восьмого исторического периода 1942–1982 гг., половина длительности глобального демографического перехода 1982–2062 гг. Это фундаментальная постоянная времени, задающая масштаб, в котором должно измеряться историческое время от неолита до наших дней.

Зависимость численности населения Земли от времени в соответствии с предложенной формулой на рис. 1, так же как и показатели продвижения цивилизации по пути исторического развития от начала неолита до 1982 года зависели только от отношения времени t к постоянной τ, т. е. от количества циклов, пройденных Мир-системой к моменту времени t.

* * *

Если отсчет времени вести в циклах от сингулярности Дьяконова – Капицы в прошлое, теоретическая гипербола приобретает наиболее простой вид:


Рис. 2. Зависимость численности населения Земли от числа циклов до исторической сингулярности N(T).

Страница 141