Население Земли как растущая иерархическая сеть - стр. 52
Существует множество вариантов такой коррекции, каждый из которых приводит ИС к совершенной через гармонические сети. Все они дают практически одну и ту же зависимость числа клаттеров растущей сети от номера цикла.
И, наконец, полученная СИС проходит еще один цикл – операцию репликации, во время которой длина звена копирования минимальна и равна единице. В процессе этой операции происходит копирование сети-оригинала в сеть-копию по правилу «клаттер в клаттер» с установкой полученных копий в новую сеть. Это последняя, предельная операция копирования сети данного ранга.
По ее завершению наступает очередь прокладки гиперсвязи между узлами двух финальных СИС и узлом стартующей сети. Для этого каждому клаттеру оригинальной СИС и ее копии добавляется еще по одной связи[10], соединяющей узел клаттера и узел финальной СИС. Каждая такая дополнительная связь представляет собой гиперсвязь: «кабель» с числом линий, равным весу Р сетеобразующего клаттера. Затем каждый узел обоих стартовых клаттеров подключается «кабелем» еще большей информационной проводимости (Р>2) к их общему узлу. После чего запускается рост сети более высокого ранга.
Демография
Сеть 65536 – сеть человека
Попробуем применить математическую модель иерархической сети четвертого ранга для объяснения закона роста численности населения Земли. Прежде всего, сформулируем первый закон Сети:
• Время цикла растущей Сети есть величина постоянная на всех стадиях ее роста.
На момент завершения цикла численность носителей должна быть равна строго определенному значению плюс-минус небольшая погрешность. Для Сети перевыполнение плана, вероятно, предпочтительнее, поскольку избавиться от избыточных носителей проще, чем добавить недостающие. Это можно сделать с помощью войн, болезней и эпидемий (ясно, что ценность человеческой жизни с точки зрения Сети не слишком велика, да еще и падает по мере ее роста).
Для дальнейшего нам понадобятся результаты исследования роста населения Земли, полученные Форстером:
Рис. 1. Результаты исследования Форстером и коллегами роста населения мира за последние 20 столетий.
Эмпирическая гипербола Форстера была получена методом наименьших квадратов при обработке данных по динамике роста населения мира от начала новой эры до 1960 года; где α – это показатель степенной функции, который в формуле зависимости численности от времени обычно округляется до минус единицы. Если использовать результаты Форстера и принять, что α = -1 – необходимо несколько увеличить постоянную Форстера при той же стандартной ошибке. Этот вопрос будет нами рассмотрен в главе «Константы Капицы».