Размер шрифта
-
+

Математика для гиков - стр. 3


1.2. Измеряем длину береговой линии: не так просто, как кажется

Математическое понятие: система измерений

Что может быть проще измерения длины чего-либо? Если мы, например, хотим узнать длину стола, то для этого можно использовать рулетку. Если мы хотим узнать дистанцию от одного города до другого, мы можем записать показания одометра в машине. Или можно взять карту и с помощью линейки высчитать дистанцию между двумя городами, а потом, используя масштаб карты, перевести сантиметры в километры или дюймы в мили.



Но вот измерение береговой линии – это более сложный процесс. Оказывается, что длина каждой отдельно взятой береговой линии зависит от длины устройства, которое используется для ее измерения. Как правило, чем меньше измерительное устройство, тем длиннее береговая линия. Теоретически, по мере того, как измерительное устройство становится все меньше и меньше, длина береговой линии увеличивается до бесконечности. Как такое возможно?



Как и многие другие формы в природе, береговые линии имеют изрезанную и неправильную форму. Таким образом, чем ближе вы рассматриваете ее, тем больше деталей замечаете. Например, если бы вы смотрели на Северную Америку с высоты спутника, то береговая линия казалась бы относительно гладкой, без особых отличительных черт. Но если вы сами идете по береговой линии, помимо всего прочего, вы замечаете узкие заливы, небольшие выступы берега и камни. А если вы опуститесь на колени, то сможете разглядеть каждый камешек и листик. Если вы воспользуетесь микроскопом, то ваши измерения дойдут и до молекул. На каждом новом уровне детализации ваши единицы измерения уменьшаются от километра до метра, от сантиметра до микрометра; и каждый раз территория измерения увеличивается. Если бы вам надо было измерить береговую линию Великобритании, используя палку длиной 100 км (около 62 миль), то конечная длина составила бы более 2800 км (примерно 1700 миль). Но если бы вы уменьшили палку до 50 км (31 миля), новая длина береговой линии составила бы 3400 км (2100 миль).

Парадокс береговых линий показывает, что хотя математика может предоставить измерения с необыкновенной точностью, она также может показать неопределенность, свойственную самой структуре реальности.


Побережье Канады – самая длинная в мире береговая линия, примерно 152 100 миль. Но вы только представьте, насколько она была бы длиннее, если бы ее измерили рулеткой.


1.3. Пузыри забавны и эффективны

Математическое понятие: объем

Представьте солнечный день в парке в самый разгар лета. Вполне возможно, там есть ребенок, который пускает мыльные пузыри. Неважно, пускаете ли вы их с помощью пластиковой палочки или большого обруча, сделанного из соломинок и веревки, мыльные пузыри – с их мерцающей поверхностью и шаровидной формой – это воздушное воплощение веселья.

Страница 3