Математика для гиков - стр. 19
1.20. Что общего у герпеса и столовой соли?
Математическое понятие: Платоновы тела
Не все трехмерные фигуры созданы равными. Подумайте о тех фигурах, которые существуют или могли бы существовать. Некоторые, как форма картофелины, бугорчатые и неровные. Другие, как звезда, аккуратные, с прямыми линиями. Шары гладкие и круглые, а фигурки в тетрисе имеют острые углы.
Однако некоторые фигуры особенные. Они обладают характеристиками, которые изучались тысячелетиями. Такая историческая группа включает в себя платоновы тела. Эти трехмерные фигуры названы в честь философа, который жил в Афинах в 400-х годах до н. э., они построены с помощью двухмерных фигур, таких, как квадраты, треугольники или пятиугольники. Но двухмерные фигуры должны соответствовать некоторым условиям, чтобы быть способными превратиться в платоново тело.
1. Во-первых, они должны быть правильными, то есть все их линии должны быть одной длины и все углы должны находиться под одинаковым градусом.
2. Во-вторых, они должны совпадать, то есть быть идентичными. Если вы положите одну фигуру на другую, то они должны полностью совпасть по размеру. (Другими словами, вы не сможете сделать платоново тело из треугольников разного размера.)
3. В-третьих, в каждой вершине – место на каждой фигуре, где соединяются линии, – должно быть одинаковое количество фигур.
Существуют пять и только пять платоновых тел.
1. Тетраэдр имеет четыре стороны, все они являются треугольниками.
2. Гексаэдр, или куб, состоит из шести квадратов.
3. Октаэдр имеет восемь сторон и выглядит как две пирамиды, соединенные основаниями. (Как и у тетраэдра, все стороны октаэдра являются треугольниками.)
4. Додекаэдр имеет двенадцать сторон, каждая сторона представляет собой пятиугольник.
5. Икосаэдр имеет двадцать сторон, каждая из которых является треугольником.
А если вы задумались, почему существует только пять платоновых тел, то у Евклида – древнегреческого математика – есть ответ на этот вопрос. Он нашел доказательство и включил его в Книгу 13 в его «Началах». Найдите этот труд, если вам интересно.
Но эти фигуры считались не просто математическими загадками. В своем диалоге «Тимей» Платон, греческий философ, утверждает (от лица одного из персонажей), что каждое тело соответствует одному элементу природы. Тетраэдр ассоциировался с огнем, куб – с землей, октаэдр – с воздухом, икосаэдр – с водой, а додекаэдр – с расположением созвездий в небе.
Сотни лет спустя, в конце 1500-х, Иоганн Кеплер использовал платоновы тела, чтобы объяснить структуру Солнечной системы. Он хотел понять, почему планеты расположены так, как они расположены. Кеплер сопоставил орбитам (которые он представил как круг) планет платоновы тела. Начиная с внутренней части Солнечной системы, порядок платоновых тел начинался с октаэдра, который соответствовал Меркурию, затем шли икосаэдр, додекаэдр, тетраэдр и куб. (Согласно Кеплеру, существовали лишь пять планет.)