Машинное обучение и Искусственный Интеллект - стр. 26
Вы заметите, что, так как у нас нет значения сущности для Сиэтла или Мумбаи, ни один из них не будет выбран в качестве значения сущности.
И мы можем структурировать нашего чат-бота для предоставления общего, информативного ответа, если не указано распознанное местоположение.
Но если мы хотим обнаружить все местоположения, чтобы предоставить более персонализированный ответ (например, «К сожалению, у нас нет магазина в Сиэтле …»), нам потребуется сущность, которая включает в себя список всех крупных городов.
И это можно легко достичь с помощью системных объектов.
Системные объекты позволяют легко обнаруживать общие специфические фрагменты информации, такие как даты, время, числа, валюты и т. д.
И среди них, существует объект @sys-location, который будет определять для нас местоположение и будет обрабатывать любой город (или штат, страну и т. д.).
И теоретически нам даже не нужна наша сущность @location, мы могли бы просто использовать @sys-location.
Хотя здесь есть два ограничения:
Вы не можете определять синонимы для городов, обнаруженных с помощью @sys-location.
И нечеткое сопоставление в настоящее время недоступно для сущности @sys-location.
Чтобы добавить сущность @sys-location, нажмите «Системные сущности» в разделе «Сущности» вашего навыка.
И включите @sys-location.
Теперь, попробуйте ввести вопрос hours for Toronto.
Вы заметите, что обнаружены сущности @sys-location и @location.
Импорт и экспорт сущностей с помощью файлов CSV работает очень похоже на намерения.
Когда вы выбираете одну или несколько сущностей, отметив флажки рядом с ними, вам будет предложено экспортировать их в CSV файл.
Кроме того, вы можете импортировать сущности, нажав кнопку «Импортировать» рядом с «Create entity».
Загрузите файл CSV с двумя новыми сущностями, который прилагается к лекции.
И импортируйте его.
После успешной загрузки и импорта сущностей вы должны увидеть их в списке.
Теперь, давайте, наконец, рассмотрим третий компонент диалогового навыка.
А именно сам диалог.
Компонент диалога позволяет нам выдавать ответ пользователю на основе его намерения и специфики его запроса, которую мы определяем с помощью сущности.
Наш чат-бот может обнаруживать и классифицировать вводимые пользователем данные, но он еще пока не может ответить пользователю.
Например, когда пользователь приветствует нас, мы можем захотеть ответить «Привет! Могу я чем-нибудь помочь?".
То же самое верно и для более сложных запросов.
Мы должны использовать точно настроенную классификацию, которую нам дают намерения и сущности, чтобы обеспечить надлежащий и точный ответ пользователю.