Размер шрифта
-
+

Машинное обучение и Искусственный Интеллект - стр. 10

Таким образом, машинное обучение – это широкая область, и мы можем разделить его на три разные категории: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением.

И есть много разных задач, которые мы можем решить с помощью них.

В контролируемом обучении, в наборе данных есть метки, и мы используем их для построения модели классификации данных.

Это означает, что, когда мы получаем данные, у них есть метки, которые говорят о том, что представляют эти данные.

В примере с сердцем, у нас была таблица с метками, это сердечный ритм, возраст, пол и вес.

И каждой такой метке соответствовали значения.

При неконтролируемом обучении у нас нет меток, и мы должны обнаружить эти метки в неструктурированных данных.

И такие вещи обычно делаются с помощью кластеризации.

Обучение с подкреплением – это другое подмножество машинного обучения, и оно использует вознаграждение для наказания за плохие действия или вознаграждение за хорошие действия.

И мы можем разделить контролируемое обучение на три категории: регрессия, классификация и нейронные сети.

Модели регрессии строятся с учетом взаимосвязей между признаками x и результатом y, где y – непрерывная переменная.

По сути, регрессия оценивает непрерывные значения.

Нейронные сети относятся к структурам, которые имитируют структуру человеческого мозга.

Классификация, с другой стороны, фокусируется на дискретных значениях, которые она идентифицирует.

Мы можем назначить дискретные результаты y на основе многих входных признаков x.

В примере с сердцем, учитывая набор признаков x, таких как удары в минуту, вес тела, возраст и пол, алгоритм классифицирует выходные данные y как две категории: истина или ложь, предсказывая, будет ли сердце работать нормально или нет.

В других классификационных моделях мы можем классифицировать результаты по более чем двум категориям.

Например, прогнозирование, является ли данный рецепт рецептом индийского, китайского, японского или тайского блюда.

И с помощью классификации мы можем извлечь особенности из данных.

Особенности в этом примере сердцем, это сердечный ритм или возраст.

Особенности – это отличительные свойства шаблонов ввода, которые помогают определить категории вывода.

Здесь каждый столбец является особенностью, а каждая строка – точкой ввода данных.

Классификация – это процесс прогнозирования категории заданных точек данных.

И наш классификатор использует обучающие данные, чтобы понять, как входные переменные относятся к этой категории.

Что именно мы подразумеваем под обучением?

Обучение подразумевает использование определенного алгоритма обучения для определения и разработки параметров модели.

Страница 10