Логика. Краткий курс - стр. 4
Последующий прогресс в развитии логики связан с такими выдающимися мыслителями, как Р. Декарт, Г. Лейбниц, И. Кант и др. Французский философ Р. Декарт (1596–1650) критиковал средневековую схоластику, а также развил идеи дедуктивной логики, сформулировал правила научного исследования в своем сочинении «Правила для руководства ума».
Неоценимый вклад в логическую науку внесли немецкий философ Г. Лейбниц (1646–1716), который сформулировал закон достаточного основания и выдвинул идею математической логики; немецкий философ И. Кант (1724–1804) и многие другие западноевропейские ученые.
Русские философы и ученые имеют не менее значительные заслуги в развитии науки логики. В их числе такие светила российской науки, как М. В. Ломоносов (1711–1765), А. Н. Радищев (1749–1802), Н. Г. Чернышевский (1828–1889), М. И. Каринский (1840–1917), Л. В. Рутковский (1859–1920), С. И. Поварнин (1870–1952).
Методы исчисления, разработанные в математике во второй половине XIX в., были широко внедрены в логику в трудах Д. Буля, Б. Рассела, Г. Фреге, Ч. Пирса и других математиков и логиков. Анализ дедуктивно проводимых рассуждений с помощью методов исчисления получил название математической, или символической, логики.
Символическая логика представляет собой область логических исследований, включающую множество так называемых «логик» (например, логика высказываний, логика предикатов, вероятностная логика и т. д.).
Широкое распространение логики в России началось в XIX в., когда она стала обязательной учебной дисциплиной в высших учебных заведениях. Расцвет логики приходится на вторую половину XIX – начало XX в. и связан с именами ученых В. Н. Карпова, М. И. Владиславлева, М. И. Каринского, Н. Я. Грота, Л. В. Рутковского, А. И. Введенского, П. С. Порецкого, С. И. Поварнина и др.
Золотой период для логики продлился в России недолго. В советской России в послереволюционный период формальная логика была объявлена буржуазной наукой. Но в 1947/1948 учебном году логику восстановили в учебных программах, причем предпочтение отдавалось логике диалектической.
Математическая логика существовала в рамках математики, избежав идеологического давления. На сегодняшний день математическая логика отошла от традиционной и не получила широкого распространения в среде гуманитариев в силу ее относительной сложности и отсутствия необходимости придавать естественным языковым выражениям символический вид.
4. Классическая логика высказывании и предикатов
Под именем понимается выражение языка, обозначающее отдельный предмет, совокупность сходных предметов, свойства, отношения. Выражение языка становится именем, если оно выступает в роли подлежащего или именной части сказуемого в простом предложении: «S есть