Криптономикон - стр. 131
меньше или больше в зависимости от того, насколько близкое к бесконечности время Тьюринг намерен ехать на велосипеде. Через некоторое время Уотерхаузу начинает казаться, что они и впрямь едут бесконечно.
Цепь сваливается, когда велосипед достигает состояния (Q = 0, С = 0). В свете вышесказанного это происходит, когда i (которое просто означает число оборотов, совершенных задним колесом) достигает некоего гипотетического значения, при котором in mod l = 0, или, говоря по-человечески, когда некое число, кратное n (такое, как, например 2n, 3n, 395n или 109 948 368 443n), оказывается в то же время кратным l. Вообще-то это может быть любое из так называемых общих кратных, но с практической точки зрения важно только первое – наименьшее общее кратное, или НОК, поскольку именно оно будет достигнуто первым и вызовет падение цепи.
Если, скажем, у звездочки двадцать зубцов (n = 20), а в цепи сто звеньев (l = 100), то после первого поворота колеса мы имеем С = 20, после двух поворотов С = 40, потом 60, 80 и 100. Однако поскольку мы ищем остаток от деления на 100, значение надо изменить на ноль. Таким образом, после пяти оборотов колеса мы достигли состояния (Q = 0, С = 0) и цепь Тьюринга сваливается. За пять оборотов колеса он проезжает всего десять метров, поэтому при таких значениях l и n велосипед практически бесполезен. Разумеется, все это верно лишь в том случае, если Тьюринг такой дурак, чтобы начать движение из состояния спадения цепи. Если же он начинает крутить педали, когда велосипед находится в состоянии (Q = 0, С = 1), то С принимает значения 21, 41, 61, 81, 1, 21… и так до бесконечности, и цепь не свалится никогда. Однако это вырожденное состояние, где «вырожденное» для математика означает «невыносимо скучное». В теории, если Тьюринг будет всякий раз выставлять нужное состояние, прежде чем бросить велосипед на улице, никто не сможет его украсть – цепь свалится через первые же десять метров.
Если же в цепи Тьюринга сто одно звено (l = 101), то после пяти оборотов мы имеем С = 100, а после шести С = 19, тогда
С = 39, 59, 79, 99, 18, 38, 58, 78, 98, 17, 37, 57, 77, 97, 16, 36, 56,76, 96, 15, 35, 55, 75, 95, 14, 34, 54, 74, 94, 13, 33, 53, 73, 93, 12, 32, 52, 72, 92, 11, 31, 51, 71, 91, 10, 30, 50, 70, 90, 9, 29, 49, 69, 89, 8, 28, 48, 68, 88, 7, 27, 47, 67, 87, 6, 26, 46, 66, 86, 5, 25, 45, 65, 85, 4, 24, 44, 64, 84, 3, 23, 43, 63, 83, 2, 22, 42, 62, 82, 1, 21, 41, 61, 81, 0
Так что состояние (Q = 0, С = 0) не будет достигнуто и цепь не свалится, пока колесо не совершит сто один оборот. За сто один оборот велосипед Тьюринга успевает проехать по дороге пятую часть километра, что совсем не так плохо. Значит, велосипед работающий. Однако в отличие от вырожденного случая его