Код таланта. Гениями не рождаются. Ими становятся - стр. 19
Один из первых ключей к разгадке роли миелина был получен в середине 1980-х годов в ходе эксперимента с участием крыс и игрушечных самосвалов. Билл Гринаф из Университета штата Иллинойс вырастил три группы крыс в разных условиях. Крысы первой группы росли изолированно друг от друга в индивидуальных пластиковых коробках. Крысы второй группы ― все вместе, но тоже в коробках. А крысы третьей группы росли в «обогащенной среде»: совместно с большим количеством разных игрушек, с которыми они играли, и даже научились пользоваться рычагом на игрушечном самосвале.
Через два месяца Гринаф произвел вскрытие крыс и исследовал их мозг. Оказалось, что у крыс третьей группы количество синапсов увеличено на 25 процентов по сравнению с представителями других групп. Эти результаты были приняты с воодушевлением, поскольку подтверждали идею о пластичности головного мозга, а также существование определенного периода в ходе его развития, когда мозг особенно хорошо реагирует на внешние условия. Но еще один результат Гринафа остался почти незамеченным. Кроме синапсов, у крыс третьей группы на 25 процентов увеличилось количество белого вещества – миелина.
Гринаф вспоминал: «Мы не обращали внимания на миелин, никто не придавал ему особого значения. Но затем стало ясно, что он играет важную роль».
И все же львиная доля внимания отдавалась нейронам и синапсам, пока в 2000 году не появилась новая технология, называемая диффузионно-тензорной томографией (ДТТ). ДТТ позволила неврологам измерить количество миелина в живом мозге. И ученые начали связывать дефицит миелина с различными нарушениями, такими как дислексия, аутизм, синдром дефицита внимания, посттравматический стресс и даже патологическая лживость. Хотя многие исследователи сосредоточились на выявлении связи миелина с болезнями, других интересовала его роль в обычном, хорошо работающем мозге.
Миелин изучали все активнее. В 2005 году Фредрик Уллен сканировал мозг нескольких концертирующих пианистов и обнаружил прямую связь между длительностью занятий и количеством белого вещества. В 2000 году Торкель Клингберг обнаружил зависимость количества белого вещества от навыков чтения, а в 2006 году Хесус Пужоль доказал существование зависимости между количеством миелина и развитием речи. В 2005 году в детской больнице в Цинциннати исследовали сорок семь обычных детей в возрасте от пяти до восемнадцати лет и обнаружили, что чем больше коэффициент интеллектуальности (IQ), тем выше организация и плотность белого вещества.
Другие исследователи, такие как доктор Филдс, изучали механизм, вызывающий подобное увеличение количества миелина. Как он писал в статье 2006 года, опубликованной в журнале Neuron, клетки нейроглии, называемые олигодендроцитами и астроцитами, реагируют на активность нерва и оборачивают активные волокна большим количеством миелина. Чем активнее нерв, тем толще становится миелиновая оболочка. А чем толще миелиновая оболочка, тем быстрее проходят сигналы. В результате по такому волокну импульсы движутся в сто раз быстрее, чем по немиелинизированному.