Как работает мозг - стр. 120
Так, Хинтон разработал трехуровневую сеть для вычисления родственных отношений. (По его замыслу, она должна была служить примером того, как работают сети, однако другие коннекционисты восприняли ее как реальную психологическую теорию.) Уровень ввода включал в себя узлы, соответствующие имени, и узлы, соответствующие типу родственных отношений, например, «Колин» и «мать». Уровень вывода включал в себя узлы, соответствующие имени человека, который находится в таких отношениях с заданным человеком, например, «Виктория». Поскольку узлы и связи составляют врожденную структуру сети, а усваивать в процессе обучения ей приходится только веса связей, эта сеть, если ее воспринимать буквально, соответствует врожденному модулю мозга, предназначенному для выдачи ответов на вопросы о том, кто состоит с указанным человеком в родственном отношении указанного типа. Эта система не пригодна для анализа родственных отношений в общем, потому что знания в ней как бы размазаны по всем весам связей, соединяющим уровень вопросов с уровнем ответов, а не хранятся в базе данных, к которой могут иметь доступ разнообразные процессы поиска информации. Следовательно, это знание окажется бесполезным, если хотя бы немного изменить вопрос: например, спросить, в каком родственном отношении состоят между собой два человека, или запросить имена членов семьи человека и родственные отношения, в которых он с ними состоит. В этом смысле модель имеет слишком большой процент врожденной структуры; она создана специально для конкретного типа вопросов>124.
Научив модель воспроизводить отношения в маленькой вымышленной семье, Хинтон обратил внимание на способность системы переносить сделанные выводы на другие пары родственников. Тем не менее при этом очень мало говорилось о том, что для того, чтобы сеть могла распространить выводы на 4 возможные пары из 104, ее нужно было сначала обучить работать с первой сотней. И каждую из ста пар в режиме обучения нужно было подать в сеть 1500 раз (это в общей сложности 150000 уроков!). Здесь явно не было ничего общего с тем, как усваивают систему семейных отношений маленькие дети. Эти цифры типичны для коннекционных сетей, потому что они приходят к решению не через правила; в них просто нужно «вдолбить» большинство примеров, и тогда они смогут просто переносить знания с одного примера на другой. Любой существенно отличающийся от прочих пример обязательно должен входить в набор для обучения, иначе сеть будет делать сомнительные выводы, как в анекдоте про статистиков на утиной охоте: один стреляет на метр выше, чем нужно, второй стреляет на метр ниже, а третий кричит: «Попали!»