Размер шрифта
-
+

Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - стр. 11

.

Недавние эксперименты подтверждают эту гипотезу. Даже младенцы понимают вероятности: по всей видимости, они с рождения встроены в их нейронные сети. Дети ведут себя как маленькие ученые: их мозг изобилует гипотезами, которые напоминают научные теории и проверяются на опыте. Способность оперировать вероятностями, по большей части бессознательно, вписана в саму логику нашего научения. Она позволяет любому из нас постепенно отвергать ложные гипотезы и сохранять только те теории, которые согласуются с данными. В отличие от других видов животных люди используют это чувство вероятностей для построения научных теорий о внешнем мире. Только мы – представители Homo sapiens – систематически генерируем абстрактные символические мысли и регулярно оцениваем их правдоподобие на основе новых наблюдений.

Инновационные компьютерные алгоритмы, учитывающие этот новый подход к научению, называются «байесовскими» – в честь преподобного Томаса Байеса (1702–1761), который сформулировал отдельные элементы этой теории еще в XVIII веке. Я предполагаю, что байесовские алгоритмы произведут настоящую революцию в машинном обучении: уже сегодня они способны извлекать абстрактную информацию не хуже любого ученого.

Наше путешествие в современную науку о научении состоит из трех частей.

Первая часть под названием «Что такое научение?» начинается с определения того, что значит для человека или животного – и для любого алгоритма или машины – учиться новому. Идея проста: учиться – значит последовательно формировать как в искусственных, так и в естественных нейронных сетях внутреннюю модель внешнего мира. Гуляя по незнакомому городу, я составляю его мысленную карту – миниатюрную модель улиц и переулков. Точно так же ребенок, который учится кататься на велосипеде, формирует подсознательную симуляцию того, как движения ног, нажимающих на педали, и рук, поворачивающих руль, влияют на устойчивость велосипеда. Аналогичным образом компьютерный алгоритм, который учится распознавать лица, собирает шаблонные модели возможных форм глаз, носов, ртов и их комбинаций.

Но как мы создаем правильную ментальную модель? Как мы увидим далее, ум учащегося можно уподобить гигантской машине с миллионами регулируемых параметров; настройки этих параметров в совокупности и определяют то, чему мы научились (например, где скорее всего будут находиться улицы на нашей ментальной карте окрестностей).

В головном мозге параметры – это синапсы, связи между нейронами, сила которых варьируется; в большинстве современных компьютеров параметры – это регулируемые веса или вероятности, определяющие силу каждой приемлемой гипотезы. Таким образом, научение – как в мозге, так и в машинах – требует поиска оптимального сочетания параметров, которые вместе определяют ментальную модель во всех ее подробностях. В этом смысле научение – проблема поиска; чтобы лучше понять, как научение работает в человеческом мозге, необходимо изучить, как алгоритмы обучения работают в современных компьютерах.

Страница 11