Размер шрифта
-
+

Искусственный интеллект – надежды и опасения - стр. 21

Отталкиваясь от причинно-следственного мышления, можно сказать, что для нас почти бесполезны любые формы подгонки кривых, модельной слепоты или статистического вывода, сколь бы сложным ни был процесс подгонки. Мы также выявили теоретические рамки для структурирования указанных ограничений по иерархическому признаку.

На первом уровне находится статистическое мышление, которое способно сообщить лишь о том, как наблюдение одного события изменит ваши взгляды на другие события. Например, что симптом может рассказать о болезни?

Далее располагается второй уровень, который опирается на первый, но не наоборот. Здесь помещаются действия. «Что будет, если мы поднимем цены?» «Что, если ты меня рассмешишь?» Этот второй уровень иерархии требует информации о вмешательствах, недоступной на первом уровне. Данную информацию можно закодировать в графическую модель, которая будет уведомлять, какие переменные реагируют на другие.

Третий уровень иерархии является контрфактуальным. Это язык, употребляемый учеными. «Что, если объект будет вдвое тяжелее?» «Что, если я поступлю иначе?» «Это от аспирина у меня перестала болеть голова или все дело в том, что я пошел спать?» Контрфактуальность занимает верхний уровень с той точки зрения, что ее невозможно вывести логически, даже умей мы предсказывать и предугадывать последствия всех своих действий. Тут необходим дополнительный элемент в форме уравнений, чтобы поведать нам, как переменные реагируют на изменения других переменных.

Одним из венчающих труды достижений в исследованиях причинно-следственных связей является алгоритмизация вмешательств и контрфактуальностей, то есть двух верхних уровней нашей иерархии. Иными словами, когда мы закодировали наше научное знание в модели (пусть даже качественной), налицо алгоритмы, позволяющие изучить модель и определить, возможно ли воспринять конкретный запрос, будь то вмешательство или контрфактуальность, на основе имеющихся данных (а если возможно, то как именно). Эта возможность кардинально изменила само занятие наукой, особенно в таких наукоемких дисциплинах, как социология и эпидемиология, где каузальные модели успели стать вторым языком. Указанные дисциплины трактуют описанную лингвистическую трансформацию как каузальную революцию. Цитируя социолога из Гарварда Гэри Кинга: «За последние несколько десятилетий о причинно-следственных связях стало известно намного больше, чем за всю предшествующую историю вопроса».

Размышляя об успехах машинного обучения и пытаясь экстраполировать их на будущее ИИ, я спрашиваю себя: «Известны ли нам базовые ограничения, которые были обнаружены в области причинно-следственных связей? Готовы ли мы преодолеть теоретические препятствия, мешающие нам переходить с одного уровня иерархии на другой?»

Страница 21