Искусственный интеллект. Этапы. Угрозы. Стратегии - стр. 36
Есть еще одно осложнение, связанное с эволюционными факторами, выдвигаемыми в качестве последнего аргумента. Проблема заключается в том, что мы не в состоянии вычислить – даже очень приблизительно – верхнюю границу трудности получения интеллекта эволюционным путем. Да, на Земле когда-то появилась разумная жизнь, но из этого факта еще не следует, будто процессы эволюции с высокой степенью вероятности приводят к возникновению интеллекта. Подобное заключение было бы в корне ошибочным, поскольку не учитывается так называемый эффект наблюдения при отборе, подразумевающий, что все наблюдатели находятся на планете, где зародилась разумная жизнь, независимо от того, насколько вероятно или невероятно такое событие на любой другой планете. Предположим, для появления разумной жизни, помимо систематических погрешностей естественного отбора, требуется огромное количество удачных совпадений – настолько большое, что разумная жизнь появилась всего лишь на одной из 1030 планет, где существуют простые гены-репликаторы. В таком случае исследователи, запуская генетические алгоритмы в попытке воспроизвести созданное эволюцией, могут столкнуться с тем, что понадобится сделать примерно 1030 итераций, прежде чем они найдут комбинацию, в которой все элементы сложатся правильно. Кажется, это вполне согласуется с нашим наблюдением, что жизнь зародилась и развивалась здесь, на Земле. Обойти данный гносеологический барьер отчасти можно путем тщательных и до некоторой степени громоздких логических ходов – анализируя случаи конвергентной эволюции характеристик, имеющих отношение к интеллекту, и принимая во внимание эффект наблюдения при отборе. Если ученые не возьмут на себя труд провести такой анализ, то в дальнейшем уже никому из них не придется оценивать максимальное значение и выяснить, насколько предполагаемая верхняя граница необходимой вычислительной мощности для воспроизведения эволюции интеллекта (см. врезку 3) может оказаться ниже тридцатого порядка (или какой-то другой столь же большой величины){103}.
Перейдем к следующему варианту достижения нашей цели: аргументом в пользу осуществимости эволюции искусственного интеллекта служит деятельность головного мозга человека, на которую ссылаются как на базовую модель для ИИ. Различные версии такого подхода отличаются лишь степенью воспроизведения – насколько точно предлагается имитировать функции биологического мозга. На одном полюсе, представляющем собой своеобразную «игру в имитацию», мы имеем концепцию полной эмуляции мозга, то есть полномасштабного имитационного моделирования головного мозга (к этому мы вернемся немного позже). На другом полюсе находятся технологии, в соответствии с которыми функциональность мозга служит лишь стартовой точкой, но разработка низкоуровневого моделирования не планируется. В конечном счете мы приблизимся к пониманию общей идеи деятельности мозга, чему способствуют успехи в нейробиологии и когнитивной психологии, а также постоянное совершенствование инструментальных и аппаратных средств. Новые знания, несомненно, станут ориентиром в дальнейшей работе с ИИ. Нам уже известен пример ИИ, появившегося в результате моделирования работы мозга, – это нейронные сети. Еще одна идея, взятая из нейробиологии и перенесенная на машинное обучение, – иерархическая организация восприятия. Изучение обучения с подкреплением было обусловлено (по крайней мере частично) той важной ролью, которую эта тема играет в психологических теориях, описывающих поведение и мышление животных, а также техники обучения с подкреплением (например, TD-алгоритм). Сегодня обучение с подкреплением широко применяется в системах ИИ