Искусственный интеллект. Что стоит знать о наступающей эпохе разумных машин - стр. 3
В реальном мире неопределенность может принимать различные формы. Например, в лице соперника, мешающего вам достичь желаемой цели, в форме последствий принятых решений, которые не очевидны сразу (если вы пытаетесь уйти от столкновения на дороге, не убедившись в безопасности маневра), или в качестве новой информации, поступающей в процессе выполнения задачи. «Умная» программа должна уметь обрабатывать все новые данные и многое другое.
Чтобы приблизиться к человеческому интеллекту, системе нужно смоделировать не только задачу, но и саму ситуацию, при которой эта задача может возникнуть. Она должна улавливать окружающую среду и реагировать на нее, при необходимости изменяя и корректируя собственные действия. О разумности системы можно говорить только тогда, когда машина научится принимать правильные решения в ситуации неопределенности.
Предпосылки к искусственному интеллекту появились задолго до первых компьютеров. Еще Аристотель описывал формальный механический аргумент, названный силлогизмом, который позволял нам делать заключения на основании суждений. Одно из его правил разрешало следующий аргумент:
Некоторые лебеди – белые.
Все лебеди – птицы.
Поэтому некоторые птицы – белые.
Данная форма аргумента – некоторые Л являются Б, все Л являются П, поэтому некоторые П являются Б – может применяться к любым Л, Б и П. Эта схема позволяет сделать правильное умозаключение вне зависимости от исходных данных. На основании формулы Аристотеля можно выстроить механизм, который может действовать разумно и без подробного «справочника по человеческому интеллекту».
Предположение Аристотеля подготовило почву для более широкого исследования природы искусственного интеллекта. Однако лишь в середине XX века компьютеры стали достаточно «умны» для проверки гипотез. В 1948 году Грей Уолтер, исследователь из Бристольского университета, создал сеть автономных механических «черепашек», которые могли двигаться, реагировать на свет и были способны к обучению. Одна из них, по имени Элси, реагировала на окружающую обстановку снижением чувствительности к свету по мере разрядки аккумулятора. Столь сложное поведение делало ее непредсказуемой, на основании чего Уолтер проводил аналогию с поведением животных.
В 1950 году британский ученый Алан Тьюринг пошел еще дальше, заявив, что однажды машины научатся думать, как люди. Он предположил, что если компьютер способен поддержать разговор с человеком, тогда мы, «из вежливости», должны признать, что компьютер умеет «мыслить». Этот критерий оценки «разумности» позже стал известен как тест Тьюринга.