Размер шрифта
-
+

Гений. Жизнь и наука Ричарда Фейнмана - стр. 27

Мальчик погружался в геометрию как Эвклид, вооружившись циркулем и угольником, чертил треугольники и пятиугольники, вписывал в окружности многогранники, складывал из бумаги платоновы тела[30]. Фейнман тогда мечтал о славе. Со своим другом Леонардом Мотнером они подумали, что нашли способ разделить угол на три равные части, используя только инструменты Эвклида, – классическая нерешаемая задача. На самом деле они просто неправильно поняли ее условие и разделили на три равные части одну из сторон равностороннего треугольника, ошибочно предположив, что линии, соединяющие эти сегменты с противоположным углом, образуют равные углы. Колеся по округе на велосипедах, Ритти и Лен воодушевленно представляли заголовки газет: «Двое учеников, только начавших изучать геометрию, решили вечную задачу трисекции угла».

Этот удивительный, многообразный мир был создан для игр, а не для работы. И тем не менее, в отличие от своего более старшего флегматичного школьного приятеля, Фейнман постоянно соприкасался с настоящей, «взрослой» математикой. Сначала едва осязаемая, у него появилась тяга к исследованиям, к решению задач, которые считаются нерешаемыми. Он предпочитал активное непосредственное изучение нового пассивному получению мудрости мертвой эпохи. В школе у каждой задачи было решение. В занимательной математике можно было быстро понять условие и найти ответ. Во время математических игр над ними не нависали никакие авторитеты. Обнаружив некоторую нелогичность в системе обозначения тригонометрических функций, Фейнман предложил собственную: для синуса,

для косинуса (х),
для тангенса (х). Он не чувствовал себя стесненным правилами, но в то же время оставался невероятно методичным. Он запоминал таблицы логарифмов и вычислял значения функций в уме. Его записные книжки заполнялись формулами, а также бесконечными рядами, суммы которых равнялись π и e.


Страница из подросткового дневника Фейнмана


За месяц до своего пятнадцатилетия Ричард написал огромными буквами на всю страницу:

Самая невероятная

Формула

В математике

e>iπ + 1 = 0[31]

Из «Истории науки о Вселенной» (Science History Of The Universe)

К концу того года Ричард освоил тригонометрию и дифференциальное и интегральное исчисление. Преподаватели могли понять, в каком направлении он двигается. Через три дня занятий геометрией преподаватель мистер Огсбери сдался. Он сел на стул, положил ноги на стол и попросил Фейнмана провести урок. Теперь Ричард самостоятельно изучал конические сечения и комплексные числа – тот раздел алгебры, где решение уравнений приобретает «геометрический оттенок», а при решении задач приходится соотносить символы и положение кривых в плоскости или пространстве. И всегда для него была важна практическая сторона знаний. В его блокноте были записаны не просто формулы и законы, но и развернутые таблицы тригонометрических функций и интегралов – не переписанные, а самостоятельно выведенные, часто совершенно новым способом, который служил определенной цели. Своему блокноту он дал название учебника, по которому с таким рвением занимался, – «Вычисления практичного человека». Когда одноклассники придумывали прозвища для ежегодного фотоальбома, Фейнмана назвали не «обладателем успешного будущего» или «самым умным», чего бы он, безусловно, хотел. Его прозвищем стало «чокнутый гений».

Страница 27