Физика в быту - стр. 9
Звуки с непрерывным спектром воспринимаются как шумы. Если полоса частот не слишком широка, мы можем грубо оценить высоту звука: рычание тигра – низкий звук (полоса низких частот), крик павлина – высокий. Если частоты более-менее равномерно распределены по всему звуковому диапазону, получается так называемый белый шум (пример: рёв близкого водопада).
Пение птиц ещё труднее передать звуками музыки, чем звучание колоколов, хотя шумом его тоже не назовёшь. С точки зрения спектра, это нечто промежуточное между звоном колокола и шумом. Каждая «нота» птичьего пения содержит не ряд кратных частот, как музыкальный звук, и не набор отдельных обертонов, как звук колокола, а несколько узких непрерывных полос частот, причем эти полосы во время песни «ползут» вверх или вниз по шкале частот, совершают резкие взлёты и падения. Именно эти взлёты и падения при переводе птичьего пения на язык музыки композиторы имитируют скачками на те или иные интервалы.
Частоты некоторых птичьих голосов простираются до 50 тысяч герц, уходя в область ультразвука, так что мы слышим лишь часть их песен.
Очень короткие звуки (стук в дверь, хлопок в ладоши) также воспринимаются как немузыкальные. Ведь нашему слуховому аппарату требуется некоторое время для определения периода колебаний и частоты основного тона, а при коротких звуках он просто не успевает это сделать. Спектры коротких звуков непрерывны, как и спектры шумов. Если ширина полосы частот невелика, мы можем приблизительно определить высоту тона, особенно в сравнении с другими подобными звуками. Вспомните, например, детский деревянный ксилофон, состоящий из дощечек разной длины. Удар по одной дощечке воспринимается просто как стук (немузыкальный звук), но ударяя по ряду дощечек-клавиш, мы уже слышим гамму.
Как создать музыкальный звук?
Одни предметы издают музыкальные звуки, а другие – немузыкальные. Самый простой, известный с древних времён источник музыкальных звуков – натянутая струна. Именно с изучения звучания струн началась математическая теория музыки, и основы её заложил в Древней Греции Пифагор (570–490 гг. до н. э.).
Самые простые движения, которые могут совершать точки струны, изображены схематически на рисунке 5: каждая точка движется туда-сюда, словно маятник, в результате струна изгибается так, что её форма соответствует части синусоиды. Длина полного периода такой синусоиды равна длине волны. Если оба конца струны закреплены, то на длине струны укладывается целое число полуволн (на верхнем рисунке – одна полуволна, на среднем – две, на нижнем – три). Такие колебания струны называются стоячими волнами или собственными колебаниями. Частоты этих колебаний кратны друг другу. Если одной полуволне соответствует частота