Размер шрифта
-
+

Физика фондового рынка. Краткая история предсказаний непредсказуемого - стр. 16

В сообществе физиков и химиков Эйнштейн получил признание за математическое объяснение броуновского движения потому, что его труд 1905 года оказался в руках Перрена[33].

Но на самом деле Эйнштейн опоздал со своим открытием на пять лет. Башелье описал математику случайных блужданий в своей диссертации еще в 1900 году. В отличие от Эйнштейна Башелье не интересовало случайное движение частичек пыли, возникающее от столкновения с атомами. Башелье интересовали случайные изменения цен на бирже.

Представьте себе, что пьяница добрел до своего отеля. Он выходит из лифта, перед ним длинный коридор. В одном конце коридора – номер 700; в другом конце – номер 799. Сам пьяница находится где-то посередине и не имеет представления, в какую сторону ему следует идти, чтобы попасть в свой номер. Он проходит, спотыкаясь и качаясь из стороны в сторону, полкоридора в одном направлении, затем полкоридора – в противоположном. Предположим, что каждый шаг, который делает пьяница, дает ему 50 %-ную вероятность того, что он немного приблизится к своему номеру 700, что в одном конце длинного коридора, или 50 %-ную вероятность того, что он немного приблизится к своему номеру 799 – в другом конце. Какова вероятность того, что, пройдя, скажем, сто или тысячу шагов, он окажется перед нужным номером?

Чтобы понять, как математика соотносится с финансовыми рынками, надо понять, что цена акции очень похожа на нашего пьяницу. В любой момент существует возможность того, что цена пойдет вверх, равно как и возможность того, что она пойдет вниз. Эти две возможности соответствуют действиям спотыкающегося пьяницы, бредущего к номеру 700 или 799, направляясь то в одну сторону, то в другую. Таким образом, вопрос, на который в данном случае может ответить математика, звучит следующим образом: если торги начинаются с определенной цены и эта цена совершает случайное блуждание, какова вероятность того, что она дойдет до какого-то определенного уровня через какой-то установленный промежуток времени? Другими словами, до какой двери, спотыкаясь, добредет цена через сто или тысячу разовых изменений на бирже?

Это – вопрос, на который Башелье ответил в своей диссертации. Он показал, что если цена акций совершает случайные блуждания, вероятность того, что она дойдет до какого-то установленного значения через определенный промежуток времени, будет соответствовать графику, известному сегодня как нормальная обобщенная функция (распределение Гаусса), или кривая нормального распределения (гауссова кривая)[34]. Эта кривая имеет форму колокола, закругленного в верхней части и расширяющегося книзу. Верхняя часть кривой располагается в районе стартовой цены, что означает, что, по наиболее вероятному сценарию, цена окажется где-то в районе стартовой. От центрального максимума кривая резко идет вниз, указывая на то, что существенные изменения цены менее вероятны. По мере того как цена на акции делает больше шагов случайного блуждания, кривая расширяется, становится в целом менее высокой. Это указывает на то, что со временем степень вероятности, что цена изменится по сравнению с первоначальной, повысится. В данном случае наглядное изображение просто бесценно, поэтому посмотрим на рисунок 1, чтобы понять, как это работает.

Страница 16