Размер шрифта
-
+

Эволюция разума, или Бесконечные возможности человеческого мозга, основанные на распознавании образов - стр. 39

Подобная математическая проблема оптимизации решается с помощью так называемого линейного программирования, позволяющего наилучшим образом использовать ограниченные ресурсы (в нашем случае – ограниченное число распознающих модулей) для представления всех примеров, на которых отрабатывалась модель. Метод линейного программирования был разработан для систем с одноразмерными входными параметрами, и это еще одна причина, по которой она оптимально подходит для описания линейной последовательности входных сигналов. Мы можем использовать этот математический подход для создания компьютерных программ, и хотя реальный мозг ограничен имеющимися физическими связями, которые он распределяет между распознающими модулями, метод тем не менее очень похожий.

Важным результатом подобной оптимизации является то, что постоянно встречающиеся образы распознаются, но не приводят к возникновению стойких воспоминаний. На утренней прогулке я пережил множество впечатлений, распознаваемых на всех иерархических уровнях, – от простых видимых углов и теней до более сложных объектов, таких как фонарные столбы, почтовые ящики, люди, животные и растения. Скорее всего, ни один из них не был уникален, и распознанные мной образы уже давно достигли оптимального уровня избыточности. В результате у меня не осталось практически никаких воспоминаний об этой прогулке. Те немногие детали, которые я запомнил, по-видимому, были вытеснены записанными поверх них новыми образами, зарегистрированными мозгом во время следующих прогулок, а эту конкретную прогулку я запомнил лишь по той причине, что написал о ней в книге.

Один важный аспект касательно функционирования нашей новой коры и попыток ее моделирования заключается в трудности одновременного постижения образов, относящихся сразу ко многим понятийным уровням. Вообще говоря, мы можем одновременно осваивать один, максимум два уровня. Если процесс обучения проходит стабильно, мы можем переходить на следующий уровень. Мы можем продолжать более тонкую настройку нижних уровней, но сфокусированы на следующем более высоком уровне абстракции. Это справедливо как в самом начале жизни, когда новорожденный ребенок осваивает основные формы и предметы, так и впоследствии, когда мы осваиваем новые материи – один уровень сложности за раз. То же самое можно сказать и о компьютерном моделировании новой коры. Если машине представлять материал в порядке увеличения абстрактности – за один раз один уровень, машины способны обучаться точно так же, как обучается человек (хотя пока не воспринимают такого множества понятийных уровней).

Страница 39