Эволюция разума, или Бесконечные возможности человеческого мозга, основанные на распознавании образов - стр. 35
В предыдущей главе я обратил внимание на то, что часто нам удается распознать образ, даже если мы не в состоянии его описать. Например, мне кажется, я смог бы выбрать из набора фотографий разных женщин фотографию той женщины с коляской, которую встретил на прогулке, хотя и не могу ее как следует себе представить или описать. В данном случае моя память о ней представляет собой список некоторых образов высокого уровня иерархии. Эти образы не имеют никаких речевых или зрительных пометок и не выражаются пикселами, поэтому я могу думать о ней, но не могу ее описать. Однако, если мне показать фотографии, мысленная обработка визуальной картинки приведет к узнаванию тех образов высокого уровня иерархии, которые были зарегистрированы при первой встрече. Так я смогу найти совпадение и выбрать ее фотографию среди других.
Даже если я встретил эту женщину на прогулке всего один раз, вполне возможно, что в моей новой коре сохранилось несколько копий ее образа. Однако, если я не думаю о ней какое-то время, соответствующие распознающие модули займутся обработкой других образов. Вот почему со временем воспоминания стираются: избыточность сокращается, и в какой-то момент некоторые воспоминания исчезают. Тот факт, что я написал об этой женщине в книге, скорее всего, позволит мне сохранить более устойчивое воспоминание о ней.
Самоассоциация и инвариантность
В первой главе я уже писал о том, что нам удается распознать образ, даже если он представлен не целиком или в искаженном виде. Первая способность, называемая самоассоциацией, заключается в умении ассоциировать образ и его часть. Структура каждого распознающего модуля позволяет реализовать эту функцию.
В процессе распознавания каждый сигнал поднимается от распознающего модуля более низкого уровня к модулю более высокого уровня, и эта связь имеет определенный «вес», указывающий на важность этого конкретного элемента в общем образе. Более важные элементы имеют больший вес при распознавании образа. Таким образом, бородка Линкольна, бачки Пресли и знаменитый высунутый язык Эйнштейна, по-видимому, имеют большой вес в тех образах, с которыми у нас ассоциируются эти знаменитости. Распознающие модули рассчитывают фактор вероятности, учитывающий параметр значимости элемента. Таким образом, общая вероятность распознавания снижается, если один или несколько элементов отсутствуют, но порог узнавания все же может быть преодолен. Как я уже говорил, расчет общей вероятности присутствия образа сложнее, чем расчет просто взвешенной суммы, в которой величина параметров тоже учитывается.