Data Science для карьериста - стр. 7
Сен-Совер
Рисунок на обложке книги называется «Femme de l'Aragon», или «Арагонская женщина». Иллюстрация позаимствована из книги Жака Грассе де Сен-Совера (1757–1810) «Костюмы разных стран» (фр. Costumes de Différents Pays), изданной во Франции в 1797 году. Каждая иллюстрация тщательно прорисована и раскрашена вручную. Богатое разнообразие коллекции Сен-Совера ярко отражает то, насколько далекими в культурном плане были города и регионы еще каких-то 200 лет назад. Будучи изолированными, люди говорили на разных языках и диалектах. На улицах городов и деревень по одежде можно было легко определить статус человека, его место жительства и род занятий.
С тех пор манера одеваться сильно изменилась, а разница между регионами, ранее такая заметная, практически исчезла. Сегодня различать жителей разных континентов стало гораздо труднее, не говоря уже о разных городах, регионах или странах. Возможно, мы отказались от культурного многообразия в пользу более разносторонней личной жизни – и уж точно в пользу более разнообразной и быстрой технологической жизни.
В то время когда большинство книг о компьютерах так похожи, издательство Manning отмечает изобретательность и инициативность компьютерного бизнеса с помощью книжных обложек, основанных на богатом разнообразии жизни регионов двухсотлетней давности, оживающей благодаря иллюстрациям Грассе де Сен-Совера.
Часть 1
Data Science. С чего начать
Если вы загуглите «как стать специалистом Data Science», перед вами, скорее всего, появится обширный список, содержащий навыки от статистического моделирования до программирования на Python, а также информация об эффективном общении и проведении презентаций. В одной вакансии может описываться роль, схожая с ролью специалиста по статистике, в то время как другой работодатель ищет кого-то с дипломом магистра информатики. Интернет вам предложит различные варианты приобретения нужных навыков – от возвращения в университет на магистерскую программу до прохождения учебного курса или практики анализа данных на текущем месте работы. В совокупности все эти способы могут показаться непреодолимыми, особенно для тех, кто еще до конца даже не определился с решением стать дата-сайентистом.
Для вас есть хорошая новость: не существует ни одного специалиста по Data Science, который обладал бы всеми этими навыками. У дата-сайентистов есть общий фундамент знаний, но каждый из них специализируется в конкретной области, причем настолько, что многие не смогут поменяться обязанностями. Первая часть этой книги призвана помочь вам разобраться во всех этих специализациях и в том, как принимать наилучшие решения для старта вашей карьеры. К концу у вас будет понимание того, как начать поиск работы.