Размер шрифта
-
+

Data Science для карьериста - стр. 4

Структура книги

Эта книга разбита на четыре части, посвященные этапам, которые проходит начинающий дата-сайентист. В первой части книги, «Data Science. С чего начать», рассказывается о том, что такое DS и какие навыки нужны для работы в этой сфере:

• В главе 1 вы узнаете о функциях дата-сайентиста, а также о различных должностях с аналогичным названием.

• В главе 2 представлено пять примеров компаний, в которых трудятся дата-сайентисты, и показано, как культура и тип каждой из них влияют на работу.

• Глава 3 описывает различные пути, которые можно выбрать для получения важных для дата-сайентиста навыков.

• Из главы 4 вы узнаете, как создавать проекты и делиться ими для создания портфолио.

Во второй части книги, «Как попасть в Data Science», объясняется весь процесс поиска вакансий:

• В главе 5 рассказывается о поиске вакансий и о том, как понять, ради каких из них стоит стараться.

• В главе 6 мы расскажем, как написать сопроводительное письмо и составить резюме, а затем скорректировать их под каждую конкретную вакансию.

• В главе 7 подробно описывается, как проходит интервью и чего от него следует ожидать.

• Из главы 8 вы узнаете, что делать после того, как получен оффер, и как обсуждать его детали.

В третьей части, «Осваиваемся в Data Science», рассматриваются основные моменты первых месяцев работы:

• В главе 9 рассказывается о том, чего следует ожидать в первые несколько месяцев работы в Data Science, а также о том, как провести это время максимально продуктивно.

• В главе 10 рассматривается процесс проведения анализа, являющегося ключевым компонентом большинства должностей в Data Science.

• Глава 11 фокусируется на внедрении моделей машинного обучения, что является необходимым для специалистов, занимающих инженерные должности.

• В главе 12 объясняется, как общаться со стейкхолдерами, – дата-сайентисты занимаются этим чаще, чем большинство других технических специалистов.

В четвертой части, «Как подняться по карьерной лестнице в Data Science», рассматриваются темы для более опытных специалистов, которые ищут способ профессионально вырасти:

• Из главы 13 вы узнаете, что делать с неудавшимися проектами Data Science.

• В главе 14 показано, как стать частью более широкого сообщества дата-сайентистов с помощью участия в конференциях и разработки открытого исходного кода.

• Глава 15 представляет собой руководство по принятию сложного решения об уходе с должности специалиста Data Science.

• Глава 16 – заключительная; в ней рассказывается о должностях, которые могут получить дата-сайентисты по мере продвижения по карьерной лестнице.

Страница 4