Размер шрифта
-
+

Data Science для карьериста - стр. 20

Учитывая эти тенденции, важно понимать, что изначально может быть непросто выделиться среди других кандидатов и попасть на финальный этап собеседования. И хотя стратегии, приведенные в этой книге, могут показаться сложными, они помогут вам привлечь внимание, а это необходимо в сложившихся условиях высокой конкуренции.

Инженер-исследователь

Ученый-исследователь разрабатывает и внедряет новые программные средства, алгоритмы и методологии, которые часто используются другими дата-сайентистами в компании. Такие должности почти всегда требуют наличия кандидатской степени, обычно в области информатики, статистики, количественных социальных наук или в смежных направлениях. Ученому-исследователю может потребоваться несколько недель, чтобы изучить и испытать методы повышения эффективности онлайн-экспериментов, повысить точность распознавания изображений в беспилотных автомобилях на 1 % или создать новый алгоритм глубокого обучения. Он даже может тратить время на написание исследовательских работ, которые будут редко использоваться в компании, но помогут поднять ее престиж и (в идеале) продвинуться в этой области. Поскольку эти должности требуют очень специфического опыта, мы не будем уделять им особого внимания в этой книге.

1.3. Выбор пути

В главе 3 мы рассмотрим несколько способов обучиться работе с данными, опишем преимущества и недостатки каждого из них, а также дадим несколько советов по выбору пути, подходящего именно вам. На этом этапе было бы неплохо задуматься, в каком направлении Data Science вы хотите специализироваться. Какой опыт у вас уже есть? Мы видели дата-сайентистов, которые в прошлом были инженерами, профессорами психологии, менеджерами по маркетингу, студентами программ статистики и социальными работниками. Часто знания, полученные в других профессиях и академических областях, могут помочь вам лучше справляться с работой в DS. Если вы уже работаете с данными, подумайте, в какой части треугольника вы находитесь. Довольны ли вы текущим положением? Хотите ли переключиться на другой тип работы в Data Science? Смена специализации зачастую вполне доступна.

1.4. Интервью с Робертом Чангом, дата-сайентистом из Airbnb

Роберт Чанг (Robert Chang) – дата-сайентист в Airbnb, который работает над продуктом Airbnb Plus. Ранее он занимался аналитикой продуктов, создавал конвейеры данных и модели, проводил эксперименты в «Команде роста» (Growth team) Twitter. Роберт ведет блог об инженерии данных, дает советы новичкам, а также рассказывает о работе в Airbnb и Twitter на странице

Страница 20