Claude AI. Полное руководство - стр. 36
“Расскажи, как используются квантовые вычисления в медицине и финансовом секторе.”Пример сложного запроса:
Этот запрос включает две разные темы, и AI может не до конца раскрыть ни одну из них, либо дать слишком общий ответ.Проблема:
Решение (использование контекста и разделение на шаги):
“Расскажи, как используются квантовые вычисления в медицине.”Первый шаг:
“Квантовые вычисления в медицине применяются для анализа больших данных, таких как генетическая информация, что помогает в разработке новых лекарств и методов лечения.”Ответ:
“Теперь расскажи, как квантовые вычисления используются в финансовом секторе.”Второй шаг (с учётом контекста):
Теперь AI сможет сфокусироваться на каждой теме отдельно, обеспечивая более точные и глубокие ответы по каждой из них.
Разделение запроса на части и использование контекста помогает AI лучше структурировать информацию и обеспечивать качественные ответы по каждой теме.Как это помогает:
5. Контекст в длинных диалогах
Когда взаимодействие с AI продолжается на протяжении нескольких запросов, важно поддерживать контекст, чтобы каждый новый вопрос учитывал предыдущие ответы. Это особенно полезно при работе с комплексными проектами, где ответы AI строятся шаг за шагом.
Пример последовательности диалога с контекстом:
“Объясни, как работает блокчейн.”Первый запрос:
“Блокчейн – это децентрализованная база данных, которая хранит информацию в виде цепочки блоков. Каждый блок содержит данные и связан с предыдущим блоком через криптографические хеши.”Ответ:
“Какие преимущества блокчейн-технологий в финансовом секторе?”Следующий запрос с контекстом:
“Блокчейн обеспечивает высокую степень безопасности и прозрачности для финансовых транзакций. Благодаря децентрализованной природе, участники сети могут подтверждать транзакции без необходимости в центральном органе, что снижает риски мошенничества и ускоряет процесс.”Ответ:
“Расскажи подробнее о применении смарт-контрактов на блокчейне и их роли в финансовых сделках.”Дальнейшее развитие темы:
Этот пошаговый подход помогает AI выстроить связную цепочку ответов и углубиться в тему. Модель “помнит” о предыдущих вопросах и может развивать диалог, основываясь на уже полученной информации.
При длительном взаимодействии с AI контекст позволяет углубляться в тему, не теряя нить разговора. Каждый новый запрос строится на основе предыдущих, что помогает раскрывать тему последовательно и полноценно.Как это помогает:
6. Указание на конкретные детали из предыдущих запросов
При работе с контекстом полезно включать в новые запросы ссылки на конкретные детали из предыдущих ответов. Это помогает AI сфокусироваться на определённых аспектах и давать точные ответы.