Что такое жизнь? - стр. 9
Рис. 4. Диффузия слева направо в растворе с различной концентрацией
То, что это случайное блуждание всех без исключения молекул перманганата должно привести к регулярному потоку в направлении меньшей концентрации и – в конце концов – к равномерному распределению, на первый взгляд вызывает недоумение. Если поделить рис. 4 на тонкие срезы с приблизительно постоянной концентрацией, молекулы перманганата, содержащиеся в данном конкретном срезе в некий момент времени, за счет случайного движения с равной вероятностью переместятся влево или вправо. Однако благодаря этому плоскость, разделяющую соседние срезы, пересечет больше молекул, приходящих слева, нежели справа, – просто потому, что слева находится больше молекул, вовлеченных в случайное движение. И пока это соответствует действительности, результатом будет регулярный поток слева направо – до достижения равномерного распределения.
Если перевести эти рассуждения на язык математики, закон диффузии будет представлять собой дифференциальное уравнение с частными производными:
Я избавлю читателя от объяснений, хотя значение этого закона можно выразить простым языком. А именно: концентрация в любой конкретной точке возрастает или падает со временем пропорционально сравнительному избытку или недостатку концентрации в ее бесконечно малом окружении. Кстати, закон теплопроводности выглядит точно так же, только вместо концентрации стоит температура. Я привел этот суровый «математически строгий» закон, желая подчеркнуть, что его физическая точность должна, тем не менее, ставиться под сомнение в каждом конкретном случае. Он основан на случайности, и его правомерность приблизительна. Как правило, это очень хорошее приближение, но лишь благодаря огромному числу молекул, вовлеченных в явление. Чем меньше их количество, тем более сильных случайных отклонений следует ожидать – и они наблюдаются при неблагоприятных условиях.
Последний пример весьма похож на второй, однако представляет особый интерес. Легкое тело, подвешенное на длинной тонкой нити в равновесной ориентации, часто используется физиками для измерения слабых сил, которые отклоняют его от равновесия, электрических, магнитных или гравитационных сил, прикладываемых таким образом, чтобы повернуть тело вокруг вертикальной оси. Разумеется, выбор легкого тела должен соответствовать целям опыта. Непрерывные попытки повысить точность этих популярных «крутильных весов» выявили любопытный предел, интересный сам по себе. Если брать все более легкие тела и тонкие и длинные нити – чтобы равновесие было чувствительным к все более слабым силам, – предел достигается, как только подвешенное тело начинает ощущать влияние теплового движения молекул окружающей среды и исполнять непрерывный хаотический «танец» вокруг равновесного положения, подобно дрожащей капле. Подобное поведение не накладывает абсолютного предела на точность измерений, проведенных при помощи весов, однако подчеркивает практический предел. Неконтролируемое воздействие теплового движения конкурирует с воздействием измеряемой силы и делает отдельные наблюдаемые отклонения незначимыми. Следует провести множество измерений, чтобы исключить влияние броуновского движения на инструмент. Я считаю данный пример наиболее наглядным для нашего исследования, ведь наши органы чувств – тоже в определенном роде инструмент. Теперь мы видим, насколько бесполезными они станут, если обретут такую чувствительность.