Размер шрифта
-
+

Человек, который разгадал рынок. Как математик Джим Саймонс заработал на фондовом рынке 23 млрд долларов - стр. 25

Джеймс и его коллеги привыкли к сверхсекретным схемам работы, и в тайне трудились над своим предприятием. Но однажды об этом узнал Нойвирт. Расстроенный тем, что предстоящие увольнения положат конец существованию их команды, он ворвался в кабинет Лейблера:

«Парни, почему вы решили уйти?»

«Как ты узнал об этом? – ответил Лейблер. – Кто-нибудь еще знает?»

«Все знают. Вы забыли на ксероксе заключительную страницу своего бизнес-плана».

Как выяснилось позднее, их стратегия была скорее в духе Максвелла Смарта[17], чем Джеймса.

В результате Саймонсу не удалось собрать необходимую сумму для открытия дела, и он отказался от этой затеи. Это не стало для Джеймса большим провалом, ведь он наконец-то добился прогресса в своем исследовании минимальных поверхностей, подраздела дифференциальной геометрии, который давно его интересовал.

Дифференциальные уравнения, которые применяются в физике, биологии, экономике, социологии и многих других областях, описывают производные математических величин или скорость изменения функции. Знаменитый закон Исаака Ньютона – сила, действующая на тело, равна массе этого тела, умноженной на его ускорение, – представляет собой дифференциальное уравнение, так как ускорение – это вторая производная по времени. Уравнения, которые включают в себя производные по времени и пространству, – это примеры уравнений частных производных, которые также применимы для описания упругости, теплоты и звука.

В теории минимальных поверхностей, исследованием которой Саймонс начал заниматься с первого семестра, став преподавателем МТИ, дано важное описание дифференциальных уравнений в частных производных применительно к геометрии. Стандартным примером из этой области является поверхность мыльной пленки, покрывающей проволочную рамку, которую опустили, а затем достали из мыльного раствора. Такая поверхность имеет наименьшую площадь, по сравнению с любой другой поверхностью, ограниченной аналогичным проволочным контуром. В XIX веке бельгийский физик Жозеф Плато, проводя эксперименты с мыльной пленкой, задался вопросом, всегда ли возможны такие поверхности с «минимальными» площадями и являются ли они настолько ровными, что каждая точка их пространства выглядит одинаково, независимо от того, насколько сложна или извилиста проволочная рамка.

Ответ на поставленный им вопрос, который в итоге получил название «задача Плато», удалось найти, по крайней мере применительно к обычным, двумерным поверхностям, что в 1930 году доказал один математик из Нью-Йорка. Саймонс хотел выяснить, является ли это верным для минимальных поверхностей с более сложными поверхностями – то, что геометры называют минимальными поверхностями в римановых многообразиях.

Страница 25