Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - стр. 33
Андерсон поместил свою «облачную камеру» внутрь мощного магнита высотой со здание аэронавтики в Калифорнийском технологическом институте (Калтехе) и стал наблюдать за треками (следами) космических лучей. Получение перенасыщенного до нужной степени пара внутри камеры требовало быстрого (адиабатического) снижения давления, что достигалось при падении поршня, сопровождаемого громким хлопком. Камеру включали только по ночам, поскольку она потребляла огромное количество электроэнергии, и тогда громкие удары поршня будили жителей Посадену, сообщая во всеуслышание, что ученые не покладая рук трудятся над раскрытием тайн Вселенной.
Изображение треков в облачной камере, с помощью которой Карл Андерсон открыл позитрон. Траектория позитрона – искривленная линия, которая начинается вблизи дна, пересекает пластинку свинца, расположенную посередине камеры, продолжается в верхней половине и тянется к потолку камеры, но там трек уже имеет большую кривизну.
На фотографиях, сделанных Андерсоном, обнаружилось равное количество пролетающих через камеру частиц, чьи треки закручивались по и против часовой стрелки. Легко предположить, что в космических лучах содержалось равное количество протонов и электронов. И действительно, скорее всего, именно этого можно было ожидать, поскольку отрицательно заряженные частицы не могут быть созданы без положительных, иначе нарушился бы баланс. Но у Андерсона в эксперименте был еще один экспериментальный параметр, который он также внимательно проанализировал, – толщина ионного следа в «облачной камере». Андерсон понял, что если треки, оставленные положительными частицами, образованы протонами, которые движутся сравнительно медленно (в данном контексте это означает, что их скорость ниже, чем 95 % скорости света), то они, эти треки, должны быть шире, толще, чем те, что наблюдались в эксперименте. Оказалось, таинственные частицы, пролетавшие через камеру, были положительно заряженными, как протоны, но такими же легкими, как электроны.
С точки зрения логики, имелась еще одна возможность – эти треки могли принадлежать электронам, движущимся в обратном направлении. Чтобы проверить такую возможность, Андерсон вставил в камеру пластину свинца, делящую ее пополам. Частица, перелетающая сквозь свинцовую пластину из первой половины камеры во вторую, должна была бы слегка замедлиться, и это четко указало бы направление ее движения. На знаменитом снимке, вошедшем в историю физики элементарных частиц, мы видим закрученный в направлении против часовой стрелки след частицы в облачной камере, прошедшей через свинец, и замедлившейся после этого.