Размер шрифта
-
+

Биоцентризм. Как сознание создает Вселенную - стр. 31

Но настоящая диковинка обнаружилась после 1935 года, когда Эйнштейн, Подольский и Розен столкнулись с необычным квантовым феноменом, связанным с запутыванием частиц. Их статья об этом приобрела такую известность, что феномен до сих пор нередко именуют «ЭПР-парадоксом». Трио ученых отвергло предположение квантовой теории, согласно которому одна частица может каким-то образом «знать» про другую, а взаимодействие между ними приписали пока неизвестному локальному искажению, а не «жуткому действию на расстоянии», как сказал Эйнштейн.

Это было отличное высказывание. Великий физик был автором нескольких таких афоризмов – именно с его легкой руки мы повторяем: «Бог не играет в кости». По квантовой теории был нанесен очередной удар, и на этот раз из-за ее настойчивых утверждений, что некоторые вещи существуют лишь как вероятности, а не как реальные объекты в реальных местах. Фраза «жуткое действие на расстоянии» десятилетие повторялась на уроках физики. Именно поэтому настоящие странности квантовой теории воспринимались с большим недоверием. Измерительные приборы тогда были довольно примитивными, да и кто бы осмелился заявить, что Эйнштейн не прав?

Но Эйнштейн ошибался. В 1964 году ирландский физик Джон Белл предложил эксперимент для определения, могут ли отдельные частицы мгновенно влиять друг на друга на больших расстояниях. Во-первых, было необходимо создать два фрагмента материи или света, которые имеют одну и ту же волновую функцию (напомню, что твердые частицы имеют и волновую природу). Со светом это легко сделать, пропустив его через особый кристалл. Здесь появляются два световых фотона, каждый с половиной энергии (а также вдвое большей длиной волны) по сравнению с фотоном на входе в кристалл. Таким образом, закон сохранения энергии не нарушен. Тот же объем суммарной энергии одинаков на входе и на выходе.

Согласно квантовой теории, все объекты могут вести себя как волна и как частица (это названо корпускулярно-волновым дуализмом), причем на квантовом уровне поведение объекта описывается вероятностно. Из этого следует, что ни одна из субатомных частиц не может занимать в пространстве определенное место или двигаться с определенной скоростью, пока не произошел коллапс (изменение) волновой функции. Но что же необходимо для такого коллапса? Как воздействовать на поведение частицы? К примеру, можно подтолкнуть ее пучком света, попытавшись ее «сфотографировать».

Не было никаких сомнений в том, что коллапс волновой функции будет иметь место при любом способе наблюдения. Например, чтобы определить местоположение электрона, экспериментаторам нужно выстрелить в него фотоном. Однако при взаимодействии двух частиц обязательно произойдет коллапс волновой функции, и наш эксперимент будет искажен. Но по мере усложнения опыта (более детально – в следующей главе) ученые убеждались, что коллапс может происходить, когда экспериментатору что-то известно о самом эксперименте.

Страница 31