BIG DATA. Вся технология в одной книге - стр. 26
Принцип прозрачности подразумевает, что пользователи понимают, как обрабатываются их данные; свобода выбора диктует право пользователей на определенное влияние на этот процесс.
Стартап музыкальных рекомендаций MoodLogic, сооснователем которого я являлся[45], предлагал своему пользователю определенную степень контроля над сочетанием использования и исследований, то есть между музыкой, которую он обычно слушает, и знакомством с чем-то новым. Мы анализировали коллекцию музыки в компьютере пользователя и создавали некую модель, позволяющую определить произведения, исполнителей, авторов, инструментальные составы, темпы и жанры, которые ему подойдут. Модель прогнозировала, насколько новое произведение может понравиться пользователю. Затем мы предлагали ему выбор из двух настроек. При выборе «безрискового» варианта система выдавала музыку примерно одного стиля, которая должна была, по нашему прогнозу, понравиться пользователю. «Зондирующая» настройка предлагала послушать музыку, которую, как мы считали, пользователь мог бы или полюбить, или возненавидеть. Выбор оставался за ним, но при этом аккумулировалась информация, которую мы могли использовать для совершенствования алгоритмов MoodLogic.
Хотя количество информации безгранично, этого нельзя сказать о времени. Решения приходится принимать. Феномен социальных данных в том, что результаты процесса их переработки могут становиться новым входящим потоком.
Людям нравится считать свои решения обоснованными. Возможность перечислить все «за» и «против» («Стоит ли принять предложение работы в другом городе или согласиться с конкурентным предложением моего нынешнего работодателя?»), сравнить варианты и выбрать то, что лучше соответствует ситуации, текущим целям и кажется наименее рискованным, придает уверенности. В прошлом люди собирали информацию, разговаривая с родными, друзьями, коллегами и наставниками. Они принимали решения в мире «небольших данных».
Сегодня можно обратиться к рейтингам удовлетворенности работой портала Glassdoor, где на условиях анонимности оценивают условия и оплату труда[46]. Там собраны отзывы сотрудников о более чем 400 000 компаний и ежегодно поступает более полумиллиона новых комментариев. Например, по компании Amazon собрано 8000 отзывов о работе, 8000 – о собеседованиях при приеме на работу и 14 000 – о зарплате. Человек, рассматривающий возможность работы в компании, получает доступ к значительно большему количеству информации о ней, чем когда-либо прежде, однако времени на то, чтобы ознакомиться со всеми 8000 отзывов и сравнить их с условиями своего нынешнего места работы, у него нет. Какие из этих отзывов достоверны, какие соответствуют рассматриваемой позиции? А если кто-то неверно понял вопрос или случайно кликнул более низкую оценку, чем хотел?