Размер шрифта
-
+

Архитектура внешнего мира. Искусство проектирования и становление европейских физических представлений - стр. 53

а) каждой конкретной системе отсчета ставится в соответствие ее собственное «локальное» классическое пространство и время;

б) эти локальные пространства и времена получают возможность «искривляться» (сжиматься или расширяться) по сравнению с другими пространствами и временами по мере изменения относительной скорости движения данной системы отсчета, то есть скорости одного наблюдателя-измерителя в сравнении со скоростью другого. В определенных случаях взаимные искажения между парами локальных пространств и времен приводят к тому, что события, которые в одной из систем отсчета являются последовательными, в другой оказываются одновременными – и наоборот.


Ил. 6

Формула для вычисления величины пространственно-временного интервала в Специальной теории относительности. Время, превращаясь в интегральную составляющую пространства, перестает играть роль соединительного звена между индивидуальной и всеобщей историей, – само понятие «всеобщая история», связанное с ньютоновским «абсолютным временем», утрачивает смысл.


Ил. 7

«Пространство-моллюск» с гауссовыми координатами, использованное Эйнштейном для объяснения гравитации в Общей теории относительности, упраздняет классическое различие между пространством как единым «концептуальным фоном» для движения тел и самими телам как объектами научного исследования. Иллюстрация из книги «Специальная и общая теория относительности, общедоступное изложение» (Einstein A. Über die spezielle und die allgemeine Relativitätstheorie, gemeinverständlich. Braunschweig: Vieweg, 1918).


Если описывать этот эффект в терминах повседневного человеческого опыта, получается, что нечто, представляющееся одному наблюдателю диахроническим процессом, для другого является пространственным объектом. При этом сказать, что один из наблюдателей прав, а другой нет, уже нельзя: возможность с помощью единого математического алгоритма «перевести» опытные данные одного в опытные данные другого означает лишь то, что каждый из них «прав по-своему». В этом, собственно, и состоит существенное мировоззренческое нововведение теории относительности: пространство и время, как теперь выясняется, не существуют в абсолютном смысле – так же как не существуют в полном или однозначном смысле объекты и процессы. Существуют лишь разноречивые интерпретации комплекса внутримировых явлений («эффекты восприятия»), которые, впрочем, можно согласовать (в знаково-числовом регистре), воспользовавшись нетривиальным, но достаточно компактным математическим аппаратом.

Еще одной влиятельной теорией, ведущей к упразднению абсолютного времени классической физики, стала разработанная примерно в тот же революционный период вероятностно-статистическая термодинамика Людвига Больцмана. Отправным пунктом для Больцмана стал сформулированный Клаузиусом второй закон термодинамики: поскольку тепло может переходить только от горячего тела к холодному, системы взаимодействующих тел должны необратимо двигаться к тепловому равновесию, что соответствует рассеянию энергии (в противоположность концентрации). Больцман поставил перед собой задачу строго доказать два положения: а) когда газ или другие замкнутые термодинамические системы находятся в этом состоянии равновесия, в них с пренебрежительно малыми отклонениями должно соблюдаться определенное среднестатистическое распределение скоростей между молекулами (вариант гауссова распределения); и б) такое распределение («молекулярный хаос») является максимально вероятным как с точки зрения механического моделирования движения молекул внутри системы, так и с точки зрения чисто математических импликаций теории вероятностей. Использовав формулу вычисления количества перестановок, Больцман показал, что кинетически смоделированному равновесному распределению соответствует максимальное число возможных параметрических состояний каждой конкретной молекулы (максимальное число возможных микросостояний системы). Соответствие двух моделей – идеализированно-кинетической и вероятностной – Больцман счел достаточным доказательством максимальной вероятности состояния «молекулярного хаоса» для реальных термодинамических систем. Уверившись, таким образом, как в непреложности второго начала термодинамики, так и в применимости вероятностно-статистических методов к описанию эволюции физического мира, Больцман пришел к довольно радикальному выводу о том, что наша «далекая от равновесия» обитаемая Вселенная – не более чем допустимая статистическая погрешность в работе всеобщего закона возрастания энтропии, то есть «гигантская флуктуация», порожденная игрой случая, подобно тому как в очень длинной последовательности случайных бросков игральной кости изредка возникает серия, обладающая выраженной симметрией. Однако сведение реальности к математической модели натолкнулось в данном случае на вполне предсказуемое препятствие: математические модели всегда обратимы – их можно читать как «слева направо», так и «справа налево», – и потому мгновенная смена импульсов всех молекул в кинетической модели Больцмана на противоположные (по направлению) должна была приводить к «недозволенному» вторым началом термодинамики уменьшению энтропии

Страница 53