Размер шрифта
-
+

2062: время машин - стр. 15

Другое заблуждение может заключаться в том, что результат, которого достигла AlphaGo, появился ниоткуда, а потому указывает на некий «экспоненциальный» рост в сфере ИИ. На самом деле это не так. Это, несомненно, важное достижение DeepMind, привлекшее к себе столько внимания, заслуживает всяческих похвал. Однако, несмотря на то что AlphaGo предлагает некий новый способ соединения компонентов, сами компоненты остаются практически неизменными[23].

До появления AlphaGo самой успешной компьютерной программой была CrazyStone, написанная Реми Куломом[24]. В 2014 году Кулом сказал в интервью, что первая победа программы над профессиональным игроком состоится через десять лет. Однако AlphaGo потребовалось немногим больше года, чтобы победить Фэна Хуи, трехкратного чемпиона Европы, и еще один, чтобы победить Ли Седоля.

Так или иначе, DeepMind приложили больше всех усилий к решению этой задачи. Раньше программы для игры в го писались одним человеком; над AlphaGo работало около пятидесяти человек. Это заняло меньше одной десятой того времени, которое этот процесс должен был занять по мнению Кулома, но потребовало количество людей, превышающее предполагаемое более чем в десять раз.

DeepMind также имели доступ к обширным серверным фермам Google, которые позволили AlphaGo играть миллиарды раз против себя самой. Даже если бы человек всю жизнь не занимался ничем другим, кроме игры в го, он бы все равно не смог даже приблизиться к такому количеству партий. Из этого следует, что AlphaGo не так уж быстро учится. Люди, в отличие от подобных программ, могут научиться что-то делать, увидев это лишь единожды. Мы всё еще пытаемся создать ИИ, который мог бы учиться на основе такого маленького количества данных. Так что, несмотря на то что победы AlphaGo стали важным символическим моментом для ИИ, они не были таким прорывным достижением, каким его представляет для вас PR-отдел Google[25].

Не только игры

Игры представляют для ИИ простую задачу. Обычно в них есть четкие правила, а победителя легко определить. Такие игры, как шахматы или го, обычно требуют от игрока незаурядных умственных способностей, а потому неудивительно, что для испытаний ИИ они подходят идеально.

Однако машины превзошли человека не только в играх. Мы наблюдаем, что компьютеры начинают работать эффективнее человека и в некоторых более прикладных областях. Например, в медицине компьютеры читают электрокардиограммы лучше врачей. В Стэнфордском университете команда под руководством Эндрю Ына, бывшего главы отдела исследований ИИ в Baidu, построила модель машинного обучения, которая может определить аритмию по электрокардиограмме лучше, чем квалифицированный врач.

Страница 15